0 M ay 2 00 6 CM Stability And The Generalised Futaki Invariant I Sean

نویسندگان

  • Sean T. Paul
  • Gang Tian
چکیده

Based on the Cayley, Grothendieck, Knudsen Mumford theory of determinants we extend the CM polarisation to the Hilbert scheme. The Baum Fulton Macpherson GRR Theorem enables us to show that on any flat, proper, local complete intersection family the restriction of the extension and the original CM sheaf are isomorphic (under a mild hypothesis on the base). As a consequence the CM stability implies the K Stability in the sense of Donaldson. When the CM polarisation is ample on the base of the family, CM stability and K stability are equivalent. §0 Introduction In order to establish a relationship between Kähler Einstein metrics on a fixed Fano manifold X and the stability of an associated projective model the second author , in [2], was led to consider a family of projective varieties parametrized by a base B:

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 06 06 50 5 v 3 [ m at h . D G ] 1 9 A pr 2 00 8 CM STABILITY AND THE GENERALIZED FUTAKI INVARIANT II SEAN

The Mabuchi K-energy map is exhibited as a singular metric on the refined CM polarization of any equivariant family X p → S. Consequently we show that the generalized Futaki invariant is the leading term in the asymptotics of the reduced K-energy of the generic fiber of the map p. Properness of the K-energy implies that the generalized Futaki invariant is strictly negative.

متن کامل

J ul 2 00 6 CM Stability And The generalized Futaki Invariant

Based on the Cayley, Grothendieck, Knudsen Mumford theory of determinants we extend the CM polarization to the Hilbert scheme. The Baum Fulton Macpherson GRR Theorem enables us to show that on any flat, proper, local complete intersection family the restriction of the extension and the original CM sheaf are isomorphic (under a mild hypothesis on the base). As a consequence the CM stability impl...

متن کامل

m at h . A G ] 1 9 A pr 2 00 8 CM STABILITY AND THE GENERALIZED FUTAKI INVARIANT I

Based on the Cayley, Grothendieck, Knudsen Mumford theory of determinants we extend the CM polarization to the Hilbert scheme. We identify the weight of this refined line bundle with the generalized Futaki invariant of Donaldson. We are able to conclude that CM stability implies K-Stability. An application of the Grothendieck Riemann Roch Theorem shows that this refined sheaf is isomorphic to t...

متن کامل

m at h . A G ] 1 8 Ju n 20 06 CM Stability And The Generalised Futaki Invariant I Sean

Based on the Cayley, Grothendieck, Knudsen Mumford theory of determinants we extend the CM polarisation to the Hilbert scheme. The Baum Fulton Macpherson GRR Theorem enables us to show that on any flat, proper, local complete intersection family the restriction of the extension and the original CM sheaf are isomorphic (under a mild hypothesis on the base). As a consequence the CM stability impl...

متن کامل

2 00 8 Cm Stability and the Generalized Futaki Invariant I

Based on the Cayley, Grothendieck, Knudsen Mumford theory of determinants we extend the CM polarization to the Hilbert scheme. We identify the weight of this refined line bundle with the generalized Futaki invariant of Donaldson. We are able to conclude that CM stability implies K-Stability. An application of the Grothendieck Riemann Roch Theorem shows that this refined sheaf is isomorphic to t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006